Snell envelope

The Snell envelope, used in stochastics and mathematical finance, is the smallest supermartingale dominating a stochastic process. The Snell envelope is named after James Laurie Snell.

Definition

Given a filtered probability space ( Ω , F , ( F t ) t [ 0 , T ] , P ) {\displaystyle (\Omega ,{\mathcal {F}},({\mathcal {F}}_{t})_{t\in [0,T]},\mathbb {P} )} and an absolutely continuous probability measure Q P {\displaystyle \mathbb {Q} \ll \mathbb {P} } then an adapted process U = ( U t ) t [ 0 , T ] {\displaystyle U=(U_{t})_{t\in [0,T]}} is the Snell envelope with respect to Q {\displaystyle \mathbb {Q} } of the process X = ( X t ) t [ 0 , T ] {\displaystyle X=(X_{t})_{t\in [0,T]}} if

  1. U {\displaystyle U} is a Q {\displaystyle \mathbb {Q} } -supermartingale
  2. U {\displaystyle U} dominates X {\displaystyle X} , i.e. U t X t {\displaystyle U_{t}\geq X_{t}} Q {\displaystyle \mathbb {Q} } -almost surely for all times t [ 0 , T ] {\displaystyle t\in [0,T]}
  3. If V = ( V t ) t [ 0 , T ] {\displaystyle V=(V_{t})_{t\in [0,T]}} is a Q {\displaystyle \mathbb {Q} } -supermartingale which dominates X {\displaystyle X} , then V {\displaystyle V} dominates U {\displaystyle U} .[1]

Construction

Given a (discrete) filtered probability space ( Ω , F , ( F n ) n = 0 N , P ) {\displaystyle (\Omega ,{\mathcal {F}},({\mathcal {F}}_{n})_{n=0}^{N},\mathbb {P} )} and an absolutely continuous probability measure Q P {\displaystyle \mathbb {Q} \ll \mathbb {P} } then the Snell envelope ( U n ) n = 0 N {\displaystyle (U_{n})_{n=0}^{N}} with respect to Q {\displaystyle \mathbb {Q} } of the process ( X n ) n = 0 N {\displaystyle (X_{n})_{n=0}^{N}} is given by the recursive scheme

U N := X N , {\displaystyle U_{N}:=X_{N},}
U n := X n E Q [ U n + 1 F n ] {\displaystyle U_{n}:=X_{n}\lor \mathbb {E} ^{\mathbb {Q} }[U_{n+1}\mid {\mathcal {F}}_{n}]} for n = N 1 , . . . , 0 {\displaystyle n=N-1,...,0}

where {\displaystyle \lor } is the join (in this case equal to the maximum of the two random variables).[1]

Application

  • If X {\displaystyle X} is a discounted American option payoff with Snell envelope U {\displaystyle U} then U t {\displaystyle U_{t}} is the minimal capital requirement to hedge X {\displaystyle X} from time t {\displaystyle t} to the expiration date.[1]

References

  1. ^ a b c Föllmer, Hans; Schied, Alexander (2004). Stochastic finance: an introduction in discrete time (2 ed.). Walter de Gruyter. pp. 280–282. ISBN 9783110183467.