Dilaton

Em física de partículas, um dilaton é uma partícula hipotética. Essa partícula aparece quando ocorrem compactações das dimensões extras na teoria de Kaluza-Klein, quando o volume das dimensões compactadas varia.

Trata-se de uma partícula de campo escalar Φ; um campo escalar que sempre surge com a gravidade. Na teoria padrão da relatividade geral, a constante de Newton, ou de maneira equivalente, a massa de Planck é sempre constante. Se "promover-mos" essa constante a um campo dinâmico, o que teríamos seria o dilaton.

Desse modo, nas teorias de Kaluza-Klein, após a redução dimensional, a massa de Planck efetiva varia como alguma potência do volume do espaço quantificado. É por isso que o volume pode se converter em dilatação na teoria efetiva de menos dimensões.

Apesar de a teoria das cordas incorporar naturalmente a teoria de Kaluza–Klein (a qual foi pioneira na introdução da dilatação), teorias das cordas perturbativas, como a teoria das cordas do tipo I, teoria das cordas do tipo II e a teoria das cordas heteróticas, já contêm a dilatação até o número máximo de 10 dimensões. Por outro lado, a teoria M em 11 dimensões não inclui a dilatação nesse espectro ao menos que estejam compactadas. De fato, a dilatação na teoria das cordas do tipo IIA é o rádion da teoria M compactado em um círculo, enquanto a dilatação na teoria das cordas E8 × E8 é o rádion para o modelo de Hořava–Witten. (Para mais detalhes sobre a origem da dilatação na teoria M, ver [1].)

Na teoria das cordas, há ainda uma dilatação na superfície do universo CFT. A exponencial desse valor esperado do vácuo determina a constante de acoplamento g, como ∫R = 2πχ para as superfícies do universo do teorema de Gauss-Bonnet e da característica de Euler χ = 2 − 2g, onde g é o gênero que conta o número de ansas e por tabela o número de loops ou interações das cordas descritas por uma determinada superfície do universo.

g = exp ( ϕ ) {\displaystyle g=\exp(\langle \phi \rangle )}

Portanto, a constante de acoplamento é uma variável dinâmica da teoria das cordas, diferentemente da teoria quântica de campos em que ela é uma constante. Enquanto não houver quebra na supersimetria, tais campos escalares podem tomar valores arbitrários (eles são módulos). No entanto, a quebra de supersimetria geralmente cria uma energia potencial para os campos escalares e os campos escalares se localizam próximos a um mínimo cuja posição deveria ser em princípio calculável na teoria das cordas.

A dilatação atua como um escalar de Brans–Dicke, em que a escala de Planck efetiva depende de ambas a escala da corda e do campo de dilatons.

Na supersimetria, o superparceiro do dilaton é denominado dilatino, e o dilaton se combina com um áxion para formar um campo escalar complexo.

Ação do dilaton

A ação dilaton-gravidade é

d D x g [ 1 2 κ ( Φ R ω [ Φ ] g μ ν μ Φ ν Φ Φ ) V [ Φ ] ] {\displaystyle \int d^{D}x{\sqrt {-g}}\left[{\frac {1}{2\kappa }}\left(\Phi R-\omega \left[\Phi \right]{\frac {g^{\mu \nu }\partial _{\mu }\Phi \partial _{\nu }\Phi }{\Phi }}\right)-V[\Phi ]\right]} .

Isso é mais generalizado na teoria de Brans–Dicke, em que temos um potencial de dilatação.

Ver também

Referências

  • Fujii, Y. (2003). «Mass of the dilaton and the cosmological constant». Prog. Theor. Phys. 110 (3): 433–439. Bibcode:2003PThPh.110..433F. arXiv:gr-qc/0212030Acessível livremente. doi:10.1143/PTP.110.433 
  • Hayashi, M.; Watanabe, T.; Aizawa, I. & Aketo, K. (2003). «Dilatonic Inflation and SUSY Breaking in String-inspired Supergravity». Modern Physics Letters A. 18 (39): 2785–2793. Bibcode:2003MPLA...18.2785H. arXiv:hep-ph/0303029Acessível livremente. doi:10.1142/S0217732303012465 
  • Alvarenge, F.; Batista, A. & Fabris, J. (2005). «Does Quantum Cosmology Predict a Constant Dilatonic Field». International Journal of Modern Physics D. 14 (2): 291–307. Bibcode:2005IJMPD..14..291A. arXiv:gr-qc/0404034Acessível livremente. doi:10.1142/S0218271805005955 
  • Lu, H.; Huang, Z.; Fang, W. & Zhang, K. (2004). «Dark Energy and Dilaton Cosmology». arXiv:hep-th/0409309Acessível livremente [hep-th] 
  • Wesson, Paul S. (1999). Space-Time-Matter, Modern Kaluza-Klein Theory. Singapura: World Scientific. p. 31. ISBN 9810235887 
  • Scott, T.C.; Zhang, Xiangdong; Mann, Robert; Fee, G.J. (2016). «Canonical reduction for dilatonic gravity in 3 + 1 dimensions». Physical Review D. 93 (8). 084017 páginas. arXiv:1605.03431Acessível livremente. doi:10.1103/PhysRevD.93.084017 
  • v
  • d
  • e
Elementar
Férmions
Quarks
u · d · c · s · t · b ·
u
 ·
d
 ·
c
 ·
s
 ·
t
 ·
b
Léptons

e
 ·
e+
 ·
μ
 ·
μ+
 ·
τ
 ·
τ+
 ·
ν
e
 ·
ν
e
 ·
ν
μ
 ·
ν
μ
 ·
ν
τ
 ·
ν
τ
Bósons
Gauge

γ
 ·
g
 ·
W±
 ·
Z
Escalar

H0
Outras
Hipotéticas
S-partículas
Gauginos
Outras
Outras
A0 · Dilaton · G ·
J
 · m · Táquion ·
X
 ·
Y
 · W' · Z' · Neutrino estéril
Composta
Hádrons
Bárions / Híperons

N
(
p
 ·
n
· Δ · Λ ·
Σ
 · Ξ ·
Ω
Mésons / Quarkónio

π
 ·
ρ
 ·
η
 ·
η′
 ·
φ
 ·
ω
 ·
J/ψ
 ·
ϒ
 ·
θ
 ·
K
 ·
B
 ·
D
 ·
T
Outros
Hipotéticas
Hádrons exóticos
Bárions exóticos
Mésons exóticos
Outras
Quase-partículas
Collexon · Sóliton de Davydov · Excíton · Elétron-buraco · Magnon · Fônon · Pi-ton · Plasmaron · Plasmon · Polariton · Polaron · Roton · Trion
Listas
Lista de partículas · Lista de quasipartículas · Lista de bárions · Lista de mésons · Cronologia da descoberta de partículas