Enllaç carboni-carboni

Els compostos d'organocarboni (o compostos orgànics del carboni) són compostos químics que contenen un enllaç químic entre carboni (C) i carboni (C) (enllaç C-C).[1] La química de l'organocarboni és la ciència corresponent que explora les propietats, l'estructura i la reactivitat d'aquests compostos.

La forma més comuna és l'enllaç simple: un enllaç format per dos electrons, un de cadascun dels dos àtoms. L'enllaç únic carboni-carboni és un enllaç sigma i es forma entre un orbital hibridat de cadascun dels àtoms de carboni. A l'età, els orbitals són orbitals hibridats amb sp3, però també es produeixen enllaços simples formats entre àtoms de carboni amb altres hibridacions (per exemple, sp2 a sp2).

De fet, els àtoms de carboni de l'enllaç senzill no necessiten ser de la mateixa hibridació. Els àtoms de carboni també poden formar enllaços dobles en compostos anomenats alquens o enllaços triples en compostos anomenats alquins. Es forma un doble enllaç amb un orbital hibridat sp2 i un orbital p que no està implicat en la hibridació. Es forma un enllaç triple amb un orbital sp hibridat i dos orbitals p de cada àtom. L'ús dels orbitals p forma un enllaç pi.

Cadenes i ramificacions

El carboni és un dels pocs elements que pot formar llargues cadenes dels seus propis àtoms, una propietat anomenada catenació. Això unit a la força de l'enllaç carboni-carboni dóna lloc a un nombre enorme de formes moleculars, moltes de les quals són elements estructurals importants de la vida, de manera que els compostos de carboni tenen el seu propi camp d'estudi: la química orgànica.

  • 2,2,3-trimetilpentà
    2,2,3-trimetilpentà

La ramificació també és freqüent en els esquelets C−C. Els àtoms de carboni d'una molècula es classifiquen segons el nombre de veïns de carboni que tenen:[2][3]

  • Un carboni primari té un carboni veí.
  • Un carboni secundari té dos carbonis veïns.
  • Un carboni terciari té tres carbonis veïns.
  • Un carboni quaternari té quatre carbonis veïns.
Carboni primari Carboni secundari Carboni terciari Carboni quaternari
Estructura general
(R = grup organil)
frameless=1.0 frameless=1.0 frameless=1.0 frameless=1.0
Estructura parcial
Fórmula estructural
frameless=1.0 frameless=1.0 frameless=1.0 frameless=1.0

En les «molècules orgàniques estructuralment complexes», és l'orientació tridimensional dels enllaços carboni-carboni en els llocs quaternaris la que dicta la forma de la molècula. A més, els loci quaternaris es troben en moltes molècules petites biològicament actives, com la cortisona i la morfina.[4]

Síntesi

Les reaccions de formació d'enllaç carboni-carboni són reaccions orgàniques en les quals es forma un nou enllaç carboni-carboni. Són importants en la producció de molts productes químics artificials com ara productes farmacèutics i plàstics.

Alguns exemples de reaccions que formen enllaços carboni-carboni són les reaccions aldòliques, les reaccions de Diels-Alder, l'addició d'un reactiu de Grignard a un grup carbonil, una reacció de Heck, una reacció de Michael i una reacció de Wittig.

La síntesi dirigida de les estructures tridimensionals desitjades per a carbonis terciaris es va resoldre en gran manera a finals del segle xx, però la mateixa capacitat per dirigir la síntesi de carboni quaternari no va començar a sorgir fins a la primera dècada del segle xxi.[4]

Força i longitud d'enllaç

L'enllaç senzill carboni-carboni és més feble que els enllaços C-H, O-H, N-H, H-H, H-Cl, C-F i molts enllaços dobles o triples, i és comparable en força als enllaços C-O, Si-O, P-O i SH,[5] però habitualment és considerat com a fort.

Enllaç C–C Molècula Energia de dissociació de l'enllaç (kcal/mol)
CH₃−CH₃ età 90
C₆H₅−CH₃ toluè 102
C₆H₅−C₆H₅ bifenil 114
CH₃C(O)−CH₃ acetona 84
CH₃−CN acetonitril 136
CH₃−CH₂OH ethanol 88

Els valors indicats anteriorment representen energies de dissociació d'enllaços C-C que es troben habitualment; ocasionalment, els valors atípics poden desviar-se dràsticament d'aquest rang.

Comparació de longituds d'enllaç en hidrocarburs simples[5]
Molècula Età Etè (o Etilè) Etí (o Acetilè)
Fórmula C₂H₆ C₂H₄ C₂H₂
Tipus d'enllaç senzill doble triple
Estructura
Hibridació del carboni sp3 sp2 sp
Longitud de l'enllaç C-C 153.5 pm 133.9 pm 120.3 pm
Proporció en relació a l'enllaç C-C 100% 87% 78%
Mètode de determinació de l'estructura espectroscòpia de rotació espectroscòpia de rotació Espectroscòpia infraroja

Casos extrems

Enllaços senzill C-C, llargs i febles

S'han identificat diversos casos extrems on l'enllaç C-C és allargat. En el dímer de Gomberg, un enllaç C-C és bastant llarg (159,7 picòmetres). Aquest enllaç és el que es trenca de manera reversible i ràpida a temperatura ambient en solució.[6]

  • Dissociació del dímer de Gomberg
    Dissociació del dímer de Gomberg

A la molècula encara més congestionada hexakis(3,5-di-tert-butilfenil)età, l'energia de dissociació de l'enllaç per formar el radical triarilmetil estabilitzat és només de 8 kcal/mol. També com a conseqüència de la seva severa congestió estèrica, l'hexakis(3,5-di-tert-butilfenil)etaà té un enllaç central molt allargat amb una longitud de 167 pm.[7]

Dobles enllaços C=C, retorçats i febles

L'estructura del tetrakis(dimetilamino)etilè (TDAE) està molt distorsionada. L'angle díedre dels dos extrems N₂C és de 28º encara que la distància C=C és normal de 135 pm. El tetraisopropiletilè gairebé isoestructural també té una distància C=C de 135 pm, però el seu nucli C₆ és pla.[8]

Enllaços triples C≡C, curts i forts

A l'extrem oposat, l'enllaç senzill carboni-carboni central del diacetilè és molt fort (160 kcal/mol), ja que l'enllaç senzill uneix dos carbonis d'hibridació sp. Els enllaços múltiples carboni-carboni són generalment més forts; s'ha determinat que el doble enllaç de l'etilè i el triple enllaç de l'acetilè tenen energies de dissociació d'enllaç de 174 i 230 kcal/mol, respectivament.[9]

S'ha observat un triple enllaç molt curt de 115 pm per a les espècies d'iodini [HC≡C–I+Ph][CF₃SO₃], a causa de la part de iodoni fortament extreta d'electrons.[10]

Referències

  1. Dembicki, 2016, p. 7.
  2. Smith, 2011, p. 116.
  3. Latscha, Kazmaier i Klein, 2016, p. 40.
  4. 4,0 4,1 Quasdorf i Overman, 2014, p. 181-191.
  5. 5,0 5,1 Luo, Yu-Ran; Cheng, Jin-Pei. «Bond Dissociation Energies». A: Handbook of Chemistry and Physics (en anglès). CRC. 
  6. Bochkarev et al., Yanovsky, p. 489-491.
  7. Rösel, Balestrieri i Schreiner, 2017, p. 405-410.
  8. Bock et al., Ruppert, p. 1678-1681.
  9. Blanksby i Ellison, 2003, p. 255-263.
  10. Streitwieser, Heathcock i Kosower, 1992, p. 574.

Bibliografia

  • Blanksby, Stephen J.; Ellison, G. Barney «Bond Dissociation Energies of Organic Molecules» (en anglès). Accounts of Chemical Research, 36(4), abril 2003. DOI: 10.1021/ar020230d. ISSN: 0001-4842. PMID: 12693923.
  • Bochkarev, L. N.; Molosnova, N. E.; Zakharov, L. N.; Fukin, G. K.; Yanovsky, A. I.; Struchkov, Y. T. «1-Diphenylmethylene-4-(triphenylmethyl)cyclohexa-2,5-diene Benzene Solvate» (en anglès). Acta Crystallographica (Section C. Crystal Structure Communications), 51(3), 1995. DOI: 10.1107/S0108270194009005.
  • Bock, Hans; Borrmann, Horst; Havlas, Zdenek; Oberhammer, Heinz; Ruppert, Klaus; Simon, Arndt «Tetrakis(dimethylamino)ethene: An Extremely Electron-Rich Molecule with Unusual Structure both in the Crystal and in the Gas Phase» (en anglès). Angewandte Chemie International Edition in English, 30(12), 1991. DOI: 10.1002/anie.199116781.
  • Dembicki, Harry. Practical Petroleum Geochemistry for Exploration and Production (en anglès). Elsevier, 2016. ISBN 9780128033517. 
  • Latscha, Hans Peter; Kazmaier, Uli; Klein, Helmut Alfons. Organische Chemie: Chemie-Basiswissen II (en alemany). Berlín: Springer Spektrum, 2016. ISBN 978-3-662-46180-8. 
  • Quasdorf, Kyle W.; Overman, Larry E. «Review: Catalytic enantioselective synthesis of quaternary carbon stereocentres» (en anglès). Nature, 516(7530), 2014. Bibcode: 2014Natur.516..181Q. DOI: 10.1038/nature14007. PMC: 4697831. PMID: 25503231.
  • Rösel, Sören; Balestrieri, Ciro; Schreiner, Peter R. «Sizing the role of London dispersion in the dissociation of all-meta tert-butyl hexaphenylethane» (en anglès). Chemical Science, 8(1), 2017. DOI: 10.1039/c6sc02727j. ISSN: 2041-6520. PMC: 5365070. PMID: 28451185.
  • Smith, Janice Gorzynski. «cap. 4. Alkanes». A: Organic chemistry (en anglès). Nova York: McGraw-Hill, 2011. ISBN 978-0-07-337562-5. 
  • Streitwieser, Andrew; Heathcock, Clayton H.; Kosower, Edward M. Introduction to organic chemistry (en anglès). Upper Saddle River, N.J.: Prentice Hall, 1992. ISBN 978-0139738500. OCLC 52836313. 
  • Vegeu aquesta plantilla
Compostos de carboni amb altres elements de la taula periòdica
CH He
CLi CBe CB CC CN CO CF Ne
CNa CMg CAl CSi CP CS CCl CAr
CK CCa CSc CTi CV CCr CMn CFe CCo CNi CCu CZn CGa CGe CAs CSe CBr CKr
CRb CSr CY CZr CNb CMo CTc CRu CRh CPd CAg CCd CIn CSn CSb CTe CI CXe
CCs CBa CLa * CHf CTa CW CRe COs CIr CPt CAu CHg CTl CPb CBi CPo CAt Rn
Fr CRa CAc ** Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
 
* CCe CPr CNd CPm CSm CEu CGd CTb CDy CHo CEr CTm CYb CLu
** CTh CPa CU CNp CPu CAm CCm CBk CCf CEs Fm Md No Lr
Química de nucli orgànic Molts usos en química Investigació acadèmica, però sense ús generalitzat Enllaç desconegut